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ABSTRACT 

SustInAfrica deliverable 1.4 represents the results of the joint efforts of FarmerLine, the Leibniz 

Institute for Agricultural Engineering and Bioeconomy (ATB), the University of Natural Resources and 

Life Sciences (BOKU) and the Natural Resources Institute Finland (LUKE). A database of recent research 

activities, technologies, businesses and scientific projects concerning the agricultural sector in Europe 

and the western world as well as initiatives working with African smallholder farmershas been created. 

This is now available for interested user groups and thus enhances the profile of sustainable 

intensification of smallholder farming structures in Africa. In addition, an evaluation of the database 

entries is included in this report, which also addresses the relevance of the respective development 

for smallholder structures in West and North Africa.   

The scientific publications in this subject area were evaluated based on their findings in the areas of 

productivity (94 publications), profitability (84 publications) and ecosystem services (82 publications). 

An overview of the current scientific knowledge is given as short reviews on these topics in order to 

facilitate decision-making for the project partners in the implementation of smart farming and 

monitoring technologies.  

The technological database (454 entries) were evaluated on the basis of 17 selected categories. 

Suitable developments were identified from the technological database and summarized in short 

reviews. To ensure that the interests of smallholders can be addressed comprehensively, the 

technological database is searchable and can thus contribute individually as a decision-making basis 

for an investment to promote sustainable intensification in agriculture. Relevant contact details for 

associated companies (311 entries) can be addressed by the database as well.  

Existing projects and initiatives (30 entries) were also integrated in the database along with their 

approach to smart farming. The deliverable also links with the EU project Smart4All, which provides a 

database for partner technologies between European companies and partners from Eastern Europe 

and extends findings of the conducted research in the SustInAfrica Project. 

All the database entries were integrated into the MergData platform and are openly available to 

interested stakeholders. All project partners are able to add further entries during the course of the 

project. 
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1 Introduction 

1.1 Objectives 
In the SustInAfrica project, African smallholder farmers are supported with cutting edge scientific 

knowledge and modern technological developments. For this purpose, it is important to get an 

overview of current projects, companies, initiatives and research in the field of Smart Farming 

technologies. For this purpose, the deliverable conducted a literature and technology research and 

summarized the results in a database, which was made open available on the Mergdata platform from 

Farmerline.  

1.2 Deliverable 1.4 and associated task 1.2a 
This deliverable consists of a report of recent research activities, businesses, available technologies, 

research projects and initiatives regarding the agricultural technology sector. The report and database 

focus mainly on European developments in the smart farming sector, with relevance for smallholder 

farmers in Africa. The database collects research activities, businesses and technologies as well as 

projects and initiatives worldwide and is published via the Mergdata platform from Farmerline. The 

database gives a platform to search for suitable partners and applications in the area of smart farming 

and monitoring technologies for African smallholder farmers and associated agricultural service 

providers. 

The deliverable D1.4 is partly described in subtask 1.2a of the SustInAfrica proposal, which reads as 

follows. “This task will gather information and knowledge on traditional, agro-ecological, and smart 

farming practices and monitoring technologies from literature (e.g. reviews and meta-analyses) and of 

selected communities in targeted AEZs […] and assess their efficiency on improving agricultural 

productivity while reducing environmental impacts of agricultural activities. Findings and criteria are 

defined by the needs of WPs 2 and 3 (e.g. history, present, future potential, transition). This task will 

conduct Literature review and/or meta-analysis to elucidate information about existing agricultural 

practices and smart farming and monitoring technologies, along their effects on productivity and 

delivery of ecosystem services. The literature review and/or meta-analysis will be done in accordance 

to gathered data and information collected from the ISI Web of Science, Scopus, data from Ministries 

in Charge of Agriculture in the 5 countries, and UN FAO database, etc. Screening of smart, open, and 

affordable monitoring technologies for farmers will be coordinated by ATB and Luke and conducted in 

collaboration with local experts mentioned in section B4 of this proposal for plant health (GH, NI, EG, 

TU), water, and soil management (GH, BF, NI, EG, TU). The screening will search for tools and solutions 

in previous and current research activities, businesses, research projects, and initiatives as well as 

already available technologies. A data base will be built and made available in FMP 

(www.mergdata.com). The database can be easily browsed from the web to provide a systematic 

summary of the findings with access to freely available tools and solutions. The database will be filtered 

to extract relevant future-oriented technologies that have potential to be tailored to the needs of 

smallholder farmers in Africa. Each sorted out technology will be ranked for their suitability of practical 

implementation for smallholder farming in African agriculture. The ranking will consider the current 

situation but also the future development in African agriculture.” (Source: Proposal SustInAfrica) 
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1.4 Working steps of the deliverable and their responsibilities 
For deliverable 1.4, the following working steps were defined as shown in Table 1. 

Table 1. Tasks, milestones and teams involved 

Subtask From (month) To (month) Milestone Teams involved 

Database 

research 

M01 M12 MS1; MS2 BOKU 

ATB 

Database set up M11 M12 MS2 Farmerline 

ATB 

Enable online 

access to the 

database 

M12 M14 MS2 Farmerline 

ATB 

Select database 

entries relevant 

for SIA  

M12 M13 MS2 ATB 

Writing Report M10 M14 MS2 ATB 

1.5 Methodology for data collection 

1.5.1 Research activities 

In order to obtain an adequate overview of recent research activities, the ISI - Web of Knowledge 

database was systematically searched. To determine suitable search strings, a two-step approach was 

followed. First, main keywords were defined and then sub-keywords were collected through the 

existing expert knowledge. Second, the sub-keywords were further refined to the most important 

items in subsequent discussions between the project partners involved. The main keywords were also 

shortened in number to ensure a manageable search scope. As a result, three main keywords, 

“profitability”, “productivity” and "ecosystem services", were combined with 33 sub-keywords each. 

To filter all non-agricultural studies, the search string was adapted, excluding papers without the 

phrases ‘Agri*’, ‘Farm*’, ‘Horti*’, ‘Livestock’, ‘crop’, ‘field’ or ‘orchard’. In the end, the Web of Science 

Core collection was searched for publications according to 99 search strings, each with and without 

the keyword "small holder" (Annex 2 Findings for recent research activities in ISI Web of Knowledge all 

collections 

Table 3). To provide a detailed overview of current research in smart farming, up to three papers from 

each of the 99 categories were analyzed. Preference was given to papers with the keyword "small 

holder". Reviews and recently published articles were also selected more frequently if they had a 

content overlap with the project. 
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1.5.2 Available Technologies 

A non-linear internet research was conducted to collect a summary of available smart farming and 

monitoring technologies. Technologies were found in diverse articles of non-scientific journals, in 

internet databases (e.g., SmartAkis) or directly on the companies’ website. Found technologies were 

included into the database. Next to their name, the developing company, a use case category and a 

short explanation of the technology was given. Further information about prices and suitable farm 

sizes was given, when provided.   

1.5.3 Businesses 

Businesses, in the field of smart farming technologies, were delineated from the available technologies 

database branch. Information about address, websites and contact details of all listed companies and 

institutions were added. 

1.5.4 Initiatives and projects 

Initiatives and projects were added to the database from a basic internet research. Further entries 

were added as they were found searching for the technologies and when analyzing the recent research 

papers. 
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2. Analysis of research activities

2.1 General database summary (Research activities) 
The papers collected in the database for recent research activities provide a broad overview of the 

scientific publications of the last years. In agreement with our project partner, BOKU, we have chosen 

three specific topics relevant for smallholder farmers of the core communities in the SustInAfrica 

project, productivity (94 papers), profitability (84 papers) and ecosystem services (82 papers). 

Publications were chosen homogeneously from the 33 sub-categories as mentioned in 1.5.1 Research 

activities. Findings from these scientific publications are presented in the following sections. 

Figure 1Recent research publication findings homogeneously distributed over 33 sub categories 

2.3 Findings for productivity 
Productivity had the most search results in the literature research with 261396 entries (Table 4). 

Conducted research studies focused on the increase in crop yields (Loew 2018; Fabregas et al., 2019; 

Grieve et al., 2019; Santiteerakul et al., 2020; Kwesiga et al., 2020; Campolo et al., 2021) and biomass 

(Hämmerle, 2018; Mochida et al., 2020), animal husbandry (Bovo et al., 2020; Liseune et al., 2021) and 

also on agroecological practices, for a more diverse farm environment while aiming for a high 

productivity (Hoffmann et al., 2020). Especially in the context of decreasing arable land due to soil 

degradation or climate change in contrast to a currently increasing population, the necessity of a more 

productive land use was given. 

Although it appears that larger farms have a positive impact on yields, at least as suggested by results 

for maize (Dutta et al., 2020), research studies were also looking for ways to increase the efficiency of 

food production for smallholder farmers. The proposed farming equipment for smallholder farmers 

was normally less expensive, easier to operate, and generally required less maintenance than 

equipment proposed for larger farms. The aim of most of the studies for smallholder farmers was to 

close the existing yield gap to the potential maximum yield (Hall et al., 2018; Dutta et al., 2020; Shah 

et al., 2021). Because smallholder farmers take a major role for food security in rural areas, supporting 

them to increase their productivity in a sustainable way was seen as important (Duncan et al., 2015). 
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Productivity research for smallholder farmers in developing countries should further be adapted. 

Improvements should be aimed for small or even no investments (Onyango et al., 2021). It is 

interesting to exploit already existing technologies, e.g. mobile phones, that can be used to spread 

information for decision support. “The research to date on this topic is mixed, with studies finding both 

positive and neutral associations between phones and yields” (Quandt et al., 2020). Next to farming 

decisions, also the opportunity for networking with stakeholders and a better market access should be 

aimed for (Ogutu et al., 2014). In addition to the networks and services described above, smartphone 

and tablet applications were playing an increasingly important part (Matejcek et al., 2021). 

One approach to increase productivity in agriculture that has been intensively researched in the last 

decade was precision agriculture, or smart farming. For farms in developed countries this involved 

using precise measurement sensors and sensor networks (Kumar et al., 2018; Mochida et al., 2019; 

Shafi et al., 2019; Gattani et al., 2019), complex evaluation algorithms (Elijah, 2018), adaptive machines 

(Sukkarieh, 2017; Zhao et al., 2020) as well as often trained artificial intelligence (Milosevic et al., 2019; 

Hesami et al., 2020; Sharma et al., 2021). Often, the main target was to respond to site-specific 

differences in the crop or individual animal parameters, for example, to improve crop protection or 

fertilization. Furthermore, timely responses to changes in the crop status were seen as important 

because agronomic traits, e.g. crop diseases, often remain undetected until they appear in later growth 

stages influencing e.g. the yield (Mochida et al., 2020). Extensive data collection and analysis has 

therefore become more and more a key element in modern agricultural systems (Shi et al., 2016; Saiz-

Rubio et al., 2020). Aravind et al. (2017) wrote “smart farming and automated agricultural technology 

have emerged as promising methodologies for increasing the crop productivity without sacrificing 

produce quality. The emergence of various robotics technologies has facilitated the application of 

these techniques in agricultural processes. However, incorporating this technology in farms has proven 

to be challenging because of the large variations in shape, size, rate and type of growth, type of 

produce, and environmental requirements for different types of crops.” In that way, increased 

efficiency and decreased environmental risks can be achieved for agriculture reducing yield losses 

(Farooque et al., 2013; Saiz-Rubio et al., 2020; Li et al., 2020). The key to reach this goal would be the 

optimal distribution of inputs according to site-specific plant needs, such as water (Roy et al., 2021), 

fertilizers (Anjom et al., 2018; Schut and Giller, 2020) or plant protection agents (Agrimonti et al., 

2021). The minimized operational costs would be another advantage of this technology (Delavarpour 

et al., 2021). The combination of data from different sources, such as soil and plant sensors in 

combination with satellite imagery, GIS and crop-soil simulation models were seen as promising for 

sub-Saharan smallholder farmers (Onyango et al., 2021). There were even big data applications for 

smallholder farmers in developing countries (Protopop and Shanoyan, 2016), but the use of this 

technology depends on investments. Lassoued et al. (2021) wrote “substantial physical investment, 

specialized human capital and effective data governance are critical to successful implementation of 

technological innovations associated with big data.” 

In addition to the pure increase in productivity, many approaches focused on resource savings without 

the loss of crop yield or even while increasing yields at the same time (Sapkota et al., 2016; Balafoutis 

et al., 2017; Grieve et al., 2019; Esgario et al., 2020; Onyango et al., 2021). Here, the evaluation of data 

from a wide variety of sources was seen as crucial as well (Saiz-Rubio et al., 2020; Mann et al., 2011). 

Resources that should be optimized include seeds (Ogutu et al., 2014), fertilizers (Maresma et al., 2016; 

Vatsanidou et al., 2020), pesticides (Anifantis et al., 2019; Santiteerakul et al., 2020) or water (Ezenne 



Deliverable D1.4 Smart Farming and Monitoring Overview  

11 
This project has received funding from the European Union’s Horizon 2020 

      research and innovation programme under grant agreement N° 861924 

et al., 2019; Hendawy et al., 2019; Nhamo et al., 2020; Li et al., 2020; Roy et al., 2021; Kamarudin et 

al., 2021). Agriculture shows a particularly high consumption of the latter resource. It accounts for 

nearly 70% of global freshwater consumption (Arenas et al., 2016). In order to counteract the influence 

of local water shortages due to climatic changes, it is therefore necessary to precisely adapt the water 

applied to the crop requirements (Arenas et al., 2016). 

Another important topic for increasing the productivity was soil quality management. To achieve 

optimal soil conditions for plant growth, researchers investigated, e.g., optimal fertilization rates 

(Hoffmann et al., 2020; Schut and Giller, 2020), clay content for improving irrigation (Falco et al., 2021), 

the implementation of a universal soil quality index (Andrade et al., 2021) or the use of plant residues 

preventing erosion (Micheletto et al., 2020). The latter practice showed in the study a significant 

increase in maize yields as a suitable low-input strategy for smallholder farmers (Hoffmann et al., 

2020). For a better estimation of site specific inputs it is necessary to sample the soil more intensively 

(Schut and Giller, 2020). However, laboratory soil analysis is expensive, so that most fields of 

smallholder farmers are insufficiently characterized regarding soil variablility (Campolo et al., 2021). 

The IsDAsoil map grants a 30 cm resolution map for soil properties for Africa (Hengl et al., 2020). 

Diversifying crops is another way to achieve better soil conditions. Intercropped fields, such as maize 

combined with sown oats or cowpea, showed promising results in increasing soil organic carbon and 

yields after a few years (Hoffmann et al., 2020). ATB conducted an intercropping trial using maize and 

soy beans, for the later analysis in the SustInAfrica (SIA) project with unmanned aerial vehicle (UAV) 

imagery. Collected data show the two crops destinguishable in the multispectral images.  

Stress factors in crops include diseases, pests, weed pressure, nutrition or water shortage which 

diminish yields or opens yield gaps. They should be prevented and action should be taken as early as 

possible (Grieve et al., 2019; Singh et al., 2020; Roper et al., 2021; Kamarudin et al., 2021; Ngugi et al., 

2021; Rahman et al., 2021; Shah et al., 2021). Therefore a rapid assessment of the plant health status 

is needed. Modern methods for the assessment of stress factors in crops included the combination of 

classic sensors with smart platforms such as UAVs, for example to prevent drought (Park et al., 2017; 

Kamarudin et al., 2021), or smart phones (Ahmad et al., 2020). Also, the combination of image data 

with machine learning algorithms for weed, pest and disease detection (Esgario et al., 2020; Hasan et 

al., 2020; Singh et al., 2020; Shah et al., 2021) or plant omics analysis in phenotyping stress tolerance 

related genes (Mochida 2015) played an important role among the researched studies. The better 

potential to reveal stress situations in crops may also improve the resilience to climate change effects 

(Ferreira et al., 2021). 

For applying inputs in a more timely and accurate manner, decision support systems may increase 

productivity and minimize resources use (Sukkarieh, 2017; Loew, 2018; Nhamo et al., 2020; 

Santiteerakul et al., 2020). Data for such systems can be provided from different sources and analyzed 

by specific algorithms (Li et al., 2020; Falco et al., 2021). It should be aimed to summarize the results 

in a simple management decision for the farmer. Similar systems exist for animal husbandry or fishing 

(Emmett et al., 2016). 

For smart farming, advances in the analysis of complex and large data were linked with recent 

developments in artificial intelligence (AI) in order to target the increase in agricultural production. In 

developed countries, the last decade has seen an immense development in the communication of 
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diverse sensors to sensor networks (Prodanović et al., 2020; Taheri et al., 2020) and the Internet of 

Things (IoT), so that sensor data can now be accessed and collected from anywhere on the globe (Li et 

al., 2020). This also increased the demand for powerful data processing tools. AI in agriculture has been 

already well investigated in large parts of the food production for this purpose. One expectation is that 

AI technologies may have positive effects on production by minimizing labor and resource use (Roy, 

2021). Sharma et al. (2021) wrote "Machine learning together with Internet of Things enabled farm 

machinery are key components of the next agriculture revolution." The same authors explored the 

application of machine learning in precision agriculture for the prediction of soil parameters and crop 

yield, for disease and weed detection in crops and for assessing crop quality and yields. Further, they 

reviewed the use of machine learning in precision livestock production by predicting fertility patterns, 

diagnosing eating disorders and cattle behavior and also including intelligent irrigation and harvesting 

techniques. Hasan et al. (2020) and Shah et al. (2021) showed an increase in the accuracy of model 

predictions for plant identification with up to 95% accuracy, counting and disease detection in the field 

(also Ahmad 2020 up to 92% accuracy) by using large artificial neural network architectures (deep 

learning). In the future, many of these tasks may also be performed directly by robots in the field 

(Aravind et al., 2017; Sukkarieh, 2017), addressing labor shortages in agriculture in developed 

countries (Grieve et al., 2019). However, model accuracy was seen as highly dependent on the 

collected training data (Burke et al., 2021) and many AI models were overfitting in specific scenarios. 

The transferability should be improved for this kind of data-driven models (Ngugi et al., 2021). Another 

issue relates to data security, which has been rarely explored so far (Prodanović et al., 2020). In 

addition, the development of highly sophisticated technological systems has been mainly focused on 

developed countries (Onwude et al., 2016). Therefore, the adaptation of technology for developing 

countries in Africa is limited due to the lack of compatibility, availability of resources to facilitate the 

technology adoption, cost of technology, government policies and adequacy of the technology for 

addressing the needs of the population (Onwude et al., 2016). 

In addition to the improvement of data analysis, there was also active research in the area of sensor 

platforms. In particular, the development of unmanned aerial vehicles (UAVs) has recently been 

strongly promoted for agricultural use. With their high mobility, ability to achieve good area coverage, 

highly accurate data acquisition, and low investment costs, UAVs were seen as a good choice as a 

sensing platform. There has also been specific development of camera technology for UAVs. In addition 

to simple RGB cameras (Hall et al., 2018; Rinnamang et al., 2020), thermal (Nhamo et al., 2020) and 

multispectral cameras (Nhamo et al., 2020) are available for UAV use today. These specific cameras 

can be used to record plant geometries as well as crop health conditions (Farrell et al., 2018; Willcox 

et al., 2018) or crop performance estimates (Nuijten et al., 2019; Nhamo et al., 2020), among others. 

Ezenne et al. (2019) found UAVs equipped with thermal cameras most suitable for detecting crop 

water status improving real-time irrigation scheduling.  

The low acquisition cost, small size, and high mobility of UAVs make them also suitable for being used 

by smallholder farmers in developing countries (Rahman et al., 2021). Nhamo et al. (2020) wrote "the 

technology improves smallholder agriculture by facilitating access to information on crop biophysical 

parameters in near real-time for improved preparedness and operational decision-making." For 

example, in Ghana a maize crop classification model was created from UAV imagery based on RGB 

data, allowing the vegetation percentage to be determined, which aids in crop estimation (Hall et al., 

2018). 
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Remote sensing with satellite platforms can deliver an even larger area coverage than UAV and the 

evaluation over longer time spans, with relatively little effort and input from the user. Satellite remote 

sensing helps to estimate crop yield (Burke and Lobell, 2017; He et al., 2018; Loew 2018; Wagner et 

al., 2020), carbon exchange (Jiang et al., 2021) or predictions for political decisions concerning 

agricultural resilience and food security (He et al., 2018). However, satellite imagery is often too coarse 

for smallholder land analysis, as the field sizes are often smaller than the resolution of the imagery 

(Jain et al., 2013). Nevertheless, active research has been conducted in the field. To some extent, 

information concerning Indian smallholders has already been extracted from Landsat imagery. The 

authors are confident that their method can be applied to other parts of the world as long as the same 

data basis is available (Jain et al., 2013). Also, satellite imagery data should be more supported with 

ground measurements to enable site-specific management (Burke and Lobell, 2017; Lobell 2020; 

Onyango et al., 2021). In Nepal, wheat productivity was increased by optimizing soil and fertilizer 

inputs (Campolo et al., 2021). However, especially in Sub-Saharan Africa, satellite imagery can be 

difficult to analyze because of small field sizes of the smallholder farmers, multi-cropping, and different 

crop species with similar phenologies. In tropical areas cloudiness during the growing season limits the 

view to the bottom of the atmosphere and thus the availability of sufficient data from space.  

Nowadays, even common technologic consumer goods offer the possibility to contribute to an increase 

in agricultural production. For example, smart phones include different sensors that may help in 

agricultural management. Therefore, more and more projects use such portable devices to improve 

agricultural productivity (Matejcek et al., 2021). For example, these devices were used for positioning 

(Fabregas et al., 2019), detecting diseases (Ahmad et al., 2020) or determining specific growth stages 

(Hufkens et al., 2019). In addition to mobile phones as sensor platforms, they can also be used as 

communication devices to crowd source or exchange information and to establish communication 

networks. Even outdated mobile phones might be useful for these technologies, which may 

significantly increase the user base. Quandt (2020) determined a slightly positive correlation between 

telephone use for agricultural purposes and increased yields for smallholders. The forwarding of short 

message services (SMS) to interested parties is a cheap and a more readily available form of 

information transfer in Sub-Saharan Africa. 'Wefarm' in Kenya is one such technology, a SMS-based 

knowledge-sharing platform that enables farmers to connect with their peers and exchange knowledge 

about their production systems (Omulo and Kumeh, 2020). 

In addition to the development and dissemination of modern technologies and approaches in 

agriculture, the adoption rate of farmers was also seen as crucial for increasing agricultural production. 

Especially if there is an information gap regarding the technology to the disadvantage of smallholders, 

agricultural adaptation was hindered (Ogutu et al., 2014). Moreover, technologies that have been 

developed for industrialized countries, and have led to increased production there, cannot always be 

easily transferred to smallholder systems in developing countries with the same effects (Aravind et al., 

2017). Onwude (2016) wrote "The application of these technologies in some developing countries in 

Africa and Asia is limited by factors such as technology compatibility with the environment, availability 

of resources to facilitate the technology adoption, cost of technology purchase, government policies, 

adequacy of technology and appropriateness in addressing the needs of the population." To increase 

the adoption rate of proposed technologies, the perspective of achieving personal livelihood goals 

might be another motivator (Omulo and Kumeh, 2020). Specific training about the target technologies 

also led to increased adoption rates in addition to production increases (Fabregas et al., 2019). 
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Additionally, the clear communication of risks increases confidence for adopting the technology 

(Oyinbo et al., 2019). In order to make appropriate political decisions for a better dissemination of new 

technologies, a precise understanding of the doubts and needs of the local farmers was required 

(Taheri et al., 2020). One of the biggest motivators to adopt new technologies is the added benefit that 

comes from the investments made. With investments as small as the cost of SMS services or 

smartphone purchases, the returns on investment can be easily achieved (Fabregas et al., 2019).  

In the future, farmers may also need to adapt to new local conditions due to climate change. Protecting 

farmland against destructive weather events or a better resilience against temperature warming is 

critical to secure future yields (Jain et al., 2013; Rao 2018; Olawuyi and Mushunje, 2020; Agrimonti et 

al., 2021; Ferreira et al., 2021; Matejcek et al., 2021). Sultan wrote in 2016 "West Africa is known to be 

particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed 

agriculture, and limited economic and institutional capacity to respond to climate variability and 

change." To secure future yields, smallholder farmers in the core communities in the SIA project will 

likely need to adapt. Better access to weather forecasts and climate data can be helpful in this regard 

(Mondal et al., 2015). The lack of infrastructures, such as electricity or network connections in rural 

areas, also limits the adoption of new technologies in the agricultural sector (Li et al., 2020). This is 

especially true for approaches that use local technology such as smartphones, wireless sensor 

networks or site-specific application technology. Satellite remote sensing, for example, is possible 

regardless of local infrastructure development and is therefore well suited for more remote regions 

(Jain et al., 2013). 

2.4 Findings for profitability 
Profits from agricultural production are a necessity for the livelihood of the farmers and secures their 

prosperity as well as that of their families. Increasing profits can provide incentives for the adoption of 

new technologies. Therefore, considering the economic benefits of introducing technological 

innovations is always of interest if widespread adoption should be targeted. Profits can be improved 

by reducing investments, increasing crop yields or minimize transaction costs between various 

stakeholders along the food chain (Bergvinson, 2017). The development of new market opportunities 

through improved quality of the product can also increase the profitability in agriculture. Nowadays, 

digital agriculture is helping smallholder farmers to realize economic potentials while saving resources 

and accelerating equitable economic growth in rural communities (Bergvinson, 2017). 

Saving on the input of raw materials plays an important role in the profitability of an agricultural 

business. In order to avoid agricultural production costs exceeding the revenues (Capmourteres et al., 

2018), reduction of the necessary costs until harvest has been a highly researched field. The relatively 

new technology of smart farming tries to achieve input savings while increasing yields. To achieve this, 

inputs to the system should be adapted to small-scale differences and thus optimally distributed in 

spatial and temporal terms. This improves profitability and production efficiency, and minimizes 

harmful environmental impacts (Koutsos and Menexes, 2019; Messina et al., 2020). For large farms in 

developed countries, this was achieved with advanced sensors, robotics and information and 

communication technology (Inoue, 2020). To save water, maps highlighting water requirement were 

generated by using weather, soil, and crop condition data (Borrero and Zablo, 2020; García et al., 

2020). Fertilizers (Fitzgerald et al., 2010; Colaco and Bramley, 2018; Bazame et al., 2020; Laekemariam 

et al., 2020; McDaniel et al., 2020; Zhang and Li, 2021) and plant protection inputs (Trivedi and Ahuja, 
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2011; Beckie et al., 2019) were optimally matched to expected harvests and profits (Silva et al., 2021). 

Specific tools for production efficiency analysis in smart farming such as data envelopment analysis 

and stochastic frontier analysis allowed researchers to see how efficient the outputs are generated 

were, regardless of the units of measurement of the inputs (Perez-Pons et al., 2021). Furthermore, the 

adoption rate for site-specific technologies can be reduced when systems fail to achieve higher 

profitability for the farmers. Here, machine learning algorithms may help to optimize site-specific 

technologies and raising profits (Saikai et al., 2020). Personal advisory extension services via digital 

technologies proved to increase profitability among smallholder farmers in Sub-Saharan Africa (Arouna 

et al., 2021). 

Increasing yields also leads to profit increases, e.g., by providing better environmental conditions 

during the growing season or the use of monitoring technologies. Studies showed increased 

profitability by improving site conditions such as soil or relief conditions (Jokela and Nair, 2016; 

Bijarniya et al., 2020; Quiros-Vargas et al., 2020), detecting diseases in time (Roth et al., 2019; Hao et 

al., 2020; Afzaal et al., 2021), and optimizing fertilizer applications (Brinkhoff et al., 2019; Wang et al., 

2019; Guerrero et al., 2021). For smallholder farmers in Rwanda, models showed that yield gaps for 

wheat could be minimized through denser seeding and higher nitrogen applications (Baudrona et al., 

2019). Profitable cultivation in irrigated rice fields in Benin was demonstrated and profitability was 

positively correlated with education, access to credit, extension services, soil quality, amount of 

fertilizer and herbicide applied, and ownership of mobile phones (Nonvide, 2019). Optimizations for 

better profits were also made in orchards using monitoring strategies for fruit quality. Diseases on fruit 

trees or palms were detected (Malinee et al., 2021) and the degree of fruit ripeness (Faisal et al., 2020) 

or fruit quality (Sinambela et al., 2020; Zhena et al., 2020) for dates or palm fruit were determined. 

Sorting fruit by quality using spectrometric classification may also offer profit increase for apples or 

cherry crops (Mendoza et al., 2014; Shao et al., 2019). Research studies were also focused on the 

adaptation of fertilizer or pesticide application to tree structure in lemon or apple orchards (Zaman et 

al., 2005; Tona et al., 2018). Other studies investigated profit increases in animal husbandry (Rathod 

and Dixit, 2020) and in grassland management (Gebremedhin et al., 2019; Jayasinghe et al., 2019; 

Gargiulo et al., 2020; Legg and Bradley, 2020; Nguyen et al., 2021; Rosa et al., 2021).  

Many of the applications mentioned above make use of remote sensing technologies. They provide a 

comprehensive database for quickly assessing optimization potentials over large areas and support 

site-specific management decisions (Khanal et al., 2020). Satellite remote sensing offers the 

opportunity of low-cost assessment of large agricultural areas. For example, it helps to identify 

cultivated or non-cultivated lands (Janus and Bozek, 2018), enables mid-season yield estimations 

(Filippi et al., 2020) or assessing plant health conditions by determining the normalized difference 

vegetation index (Caiserman et al., 2019; Stepanov et al., 2020). Combined with soil and environmental 

data, satellite imagery was also an important data input for establishing the ISDA soil map (Hengl et 

al., 2020). Unlike satellite platforms, UAV-based imagery offers very high spatial resolution and thus 

provides important insights into seasonal plant and soil differences (Moran et al., 1997) revealing even 

subtle differences in the canopy (Messina et al., 2020). UAVs were beneficial for agricultural 

optimization of profit, sustainability and environmental protection (Sinha, 2020). They were used to 

detect plant stress (Spachos and Gregori, 2019; Skevas and Kalaitzandona, 2020) or diseases (Garza et 

al., 2020) in time and to estimate crop yields early (Ballesteros et al., 2018). In addition to pure data 
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collection, UAVs can also be used directly for agricultural applications. These include, for example, the 

application of seeds, pesticides or fertilizers, thus contributing to increased profitability (Inoue, 2020). 

Farmers usually do not focus on the data but rather on the specific application in the field and thus 

possible increases in profit. Farm management information systems (FMIS) can be fed from various 

data sources, including not only current data but also previous records of site conditions, and thus 

support correct and timely decisions over the season. In this way, the production and profitability of a 

farm can be increased (Gsangaya et al., 2020; Li et al., 2020). According to Fountas et al. (2015), the 

purpose of FMIS today is "to meet the increased demands to reduce production costs, comply with 

agricultural standards, and maintain high product quality and safety." However, farmers may be 

reluctant to use FMIS because collecting, aggregating, and importing data into FMIS can be time 

consuming (Paraforos et al., 2017). To reduce this effort, IoT may automate the process of data 

collection and provision. Together with sensor technologies, Big Data and cloud computing, there is 

the opportunity, according to Himesh et al. (2018), "to move to the next level of farm productivity and 

profitability." Even more sophisticated, robotic technologies would make intelligent decisions directly, 

allowing for immediate and site-specific implementation in the future (Blanes et al., 2011; Farooque 

et al., 2013). These systems, characterized by high investment costs, will be an interesting solution to 

labor shortages in agriculture in the developed countries for large-scale farms (Vasconez et al., 2019), 

but will play a minor role for smallholder structures. Furthermore, the logistics of selling agricultural 

products can also be supported with IoT (Sun et al., 2020) or blockchain technologies (Chen et al., 

2021). For controlled environments such as greenhouses, management support from trained artificial 

intelligences has already been shown to lead to a better performance than purely human-managed 

greenhouses (Hemming et al., 2020). Intensive research is currently underway to develop this type of 

assistance also for arable farming. 

To increase adoption rates of new developed technologies, training plays an important role. Important 

motivators are technologies that are proven to increase profit or minimize risk of losses (Kuwornu et 

al., 2018; Monjardino et al., 2020). Mobile phone information networks can directly bring profit 

improvement when farmers get better prices selling their goods because of reduced information 

disadvantages (Arinloye et al., 2013) or indirectly act as information support in implementing new 

technologies (Cole and Fernando, 2021). For modern smartphones, smart farming app technologies in 

Sub Saharan Africa could already lead to 10% increases in rice farming profits (Arouna et al., 2021). 

However, according to Koutsos and Menexes (2019), if more advanced precision technologies are to 

be adopted in the manner of Western agriculture, "additional application or management costs and 

investment on new equipment and trained employees" are required, which can lower adoption rates. 
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2.2 Findings for ecosystem services 
The study of ecosystem services in their benefits and maintenance is an interdisciplinary task at 

different scales. It requires diverse agricultural actors to achieve an optimization of ecosystem services 

(Tixier et al., 2013). They certainly represent an essential variable in achieving food security and 

nutrition (Vurro et al., 2019). In addition to direct influences on diet through fishing (Emmett et al., 

2016; Romano et al., 2018), hunting, and gathering edible plants, ecosystem services also influence 

environmental variables affecting crops, such as soil carbon content or water retention capacity 

(Forsmoo et al., 2018). To maintain ecosystem services the diversity of agricultural landscapes is 

important (Weigel et al., 2018). There is a bilateral influence factor between ecosystem services and 

food production. Consequently, the increasing mechanization of agriculture also leads to an influence 

of these devices on the ecosystems linked to them (Lajoie-O'Malley et al., 2020). While this 

mechanization process has led to an increase in crop yields on the one hand, it also threatens ecological 

efficiency and nutrient content on the other (Biradar et al., 2019).  

Ecosystem services depend on local ecosystem structures. Therefore, the composition of local 

agricultural cultivation is an important factor influencing these. Agroforestry is recognized by the 

Intergovernmental Panel on Climate Change (IPCC) report in its simultaneous role in food security and 

its protection against land degradation and positive influence on carbon storage. In addition, this form 

of agriculture offers climate adaptation benefits and is therefore promoted as climate smart 

agriculture for smallholder farmers (Kearney et al., 2017). To increase the adoption of agroforestry, 

research is being conducted on the optimized implementation for smallholder farmers (Cisse et al., 

2018) and the effectiveness of the system (Wolf et al., 2019). Precision agriculture is another very 

common practice especially on large scale farms in developed countries, which has also impacts on 

ecosystem services. Because of the potential environmental benefits, optimized rates of application 

could also be found among smallholder farmers in developing countries (Finge et al., 2019). Precision 

agriculture avoids the excessive use of resources and waste, thus causing less environmental pollution 

(Finge et al., 2019; Semeraro et al., 2019). Research is conducted on each input resource individually, 

e.g., for water, to understand ecosystem-resource interactions or to identify and quantify relevant

ecosystem services (Shah et al., 2021). Further, there is regenerative agriculture, which according to

Gosnell et al. (2019) "concerns itself with enhancing and restoring resilient systems supported by

functional ecosystem processes and healthy, organic soils capable of producing a full suite of

ecosystem services, among them soil carbon sequestration and improved soil water retention."

Conservative agriculture is primarily intended to mitigate climate change and prevent the loss of

agricultural land, e.g. through soil degradation. Increased emphasis is placed on the type of tillage and

associated ecosystem services. For arid regions, modeled yield increases could be generated with this

method if appropriate agricultural management decisions were assumed (Su et al., 2021). Real yield

increases in maize could also be achieved for African smallholder farmers (Mubiru et al., 2017).

Furthermore there is sustainable agriculture, which according to Corato (2020) “utilizes natural

renewable resources in the best way due to their intrinsic features by minimizing harmful impact on

the agroecosystems.” Less holistic studies further address crop diversification for pest control (Bajwa

et al., 2019; Hoffmann et al., 2020; Colbach et al., 2021), the status of insect pollinators (Willcox et al.,

2018) or the harmful impact of invasive species (Dash et al., 2019; Rai and Singh, 2020).

To meet the need for sustainable intensification of agriculture, soil management that involves carbon 

sequestration, water purification and retention, nutrient and material cycles and biodiversity, in 
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addition to soil productivity is needed (Techen and Helming, 2017). However, to achieve sustainable 

development goals, such as ensuring food security, soil must always be considered in the context of its 

associated ecosystem services (Bouma, 2014). For example, soil microorganisms (Steffi and Josephine, 

2013) or soil pore characteristics (Cercioglu et al., 2018) as key factors for the soil fertility, the 

promoted plant health or delivered ecosystem services are investigated. There are also studies in the 

field of smart farming mainly focused on developed countries, e.g. Germany, that develop robotic, 

internet and communication technologies for optimizing soil management (Techen and Helming, 

2017). In this context, also web-based platforms for orchards (Pandey and Tarun, 2019) or deep 

learning models for soil property estimation in an agricultural landscape (Jeong, 2020) have been 

developed for site-specific management. Farmers, who show a growing awareness of the importance 

of soils for crop production and the provision of ecosystem services (Rose et al., 2016), can further 

choose their crops to aim for reduced soil erosion, reduced pesticide and fertilizer impairment, or 

improved ecosystem services (Gu and Wylie, 2017). 

The resilience of agricultural production and improvement of its impact on climate change is a field of 

intense scientific study today. Feeding the global population sustainably, nutritiously, equitably, and 

ethically in times of climate change is seen as a major challenge (Sapkota et al., 2016; Khanna et al., 

2018; Stringer et al., 2020; Weiss et al., 2020). Particularly in areas where agricultural production is 

low and opportunities for adaptation to climate change are limited, there is a risk that productivity will 

continue to decline due to projected climate change (Manei et al., 2016). For example, increased 

drought events were diminishing provisional ecosystem services in Botswana by triggering land-use 

changes (Mugari et al., 2020). For estimating dynamic drought events and its impacts, the distribution 

of weather stations was too sparse and Mugari et al. (2020) argued that the vegetation indices from 

remote sensing data would be a viable alternative to assess the spatial dynamics of droughts in data-

poor regions such as Bobirwa sub-district. Strategies to improve resilience to climate change include 

crop breeding for high yields and improved adaptive capacities to climatic changes (Harfouche et al., 

2019) or using abandoned land for carbon storage (Bell et al., 2020).  

Land use decisions in small-scale structures represent an important influence on local ecosystem 

services. Land use and land use change models are needed to better assess the impacts of these 

complex options (Celio et al., 2019; Ongsomwang et al., 2019). These are also used to assess the 

impacts of current agriculture on ecosystem services, agricultural and ecosystem productivity, carbon 

storage capacity, and the hydrological cycle (Bayer et al., 2021; Srichaichana et al., 2019). Nowadays, 

the development of ecosystem services and its interactions with the agricultural environment is 

predominantly monitored on a large scale by analyzing satellite image data (Emmett et al., 2016; Weiss 

et al., 2020). This includes crop distribution (Liang et al., 2019), soil properties (Maltese and Neale, 

2018; Cucchiaro et al., 2020), crop production (Rosa et al., 2017; Hunt et al., 2019) as well as mapping 

of biodiversity or ecosystem services (Dronova et al., 2011; Pettorelli et al., 2014; Petrou et al., 2015; 

Martinez et al., 2016; Sinare et al., 2016; Rosa et al., 2017; Jones et al., 2018) or the evaluation of those 

maps as tools for decision makers (Ochoa and Urbina-Cardona, 2014). Further greenhouse gas 

emission calculations for farmland and livestock (Parente et al., 2019), leaf area index estimations 

(Kamal et al., 2016), plant health (Toukem et al., 2020) or biomass estimations (Kearney et al., 2017) 

are supported with satellite imagery. For African wetlands, satellite imagery is used to distinguish 

between different habitat types as well (Jacob et al., 2014). High-resolution data from UAVs provides 

a good area performance, while maintaining low investment costs. With UAV imagery it is possible to 
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get insights to surface height models (Forsmoo et al., 2018), species richness for beetles (Woodcock et 

al., 2010), floral resources and pollinator populations (Xavier et al., 2018) or biodiversity estimations 

(Libran-Embid et al., 2020). UAVs can also provide plant structural parameters (Price et al., 2020) or 

reference data for plant abundance in large areas (Sankey et al., 2019). For smallholder farmers low-

cost variations of UAV applications were successfully tested for tree biomass assessment in 

monoculture plantation (Miller et al., 2017) or yield prediction in agroforestry (Leroux et al., 2020).  

Improving the quality of life for smallholder farmers from developing countries is also a challenge in 

rapidly changing rural economies (Adams et al., 2019). Smallholder farmers were found to be 

vulnerable to climate change, as they are particularly dependent on agricultural production or 

ecosystem services (Hannah et al., 2017). However, especially in remote, poverty-stricken areas, data 

to validate large-scale ecosystem service models is scarce (Sinare et al., 2016). In Africa, studies 

concerning the possibility of biofuel production and associated improvements in climate regulating 

ecosystem services for smallholder farmers have been explored (Romeu-Dalmau et al., 2018). In 

addition, farmers' existing knowledge of ecosystem services, such as the presence of natural predators 

of crop pests, or alternative defenses through pest management (Mkenda et al., 2020), and the 

prevalence and use of cell phones for agricultural information gathering have been studied (Baird and 

Hartter, 2017). Further scientific research has taken place on soil degradation. The associated losses in 

ecosystem services and biodiversity have negative effects on the agricultural supply of Africa's 

smallholder farmers (Mubiru et al., 2017). 



Deliverable D1.4 Smart Farming and Monitoring Overview  

20 
This project has received funding from the European Union’s Horizon 2020 

      research and innovation programme under grant agreement N° 861924 

3. Available Technologies

3.1 General database summary (Technologies) 
The database for technology research contains 454 entries. All listed technologies achieved TRL 9 

standard. In addition to the name of the technology, the developer and country of origin, an 

assignment to a category as well as a description was given. The category was set either from the 

source if available or adapted by expert knowledge. Where available, an estimate of the field size for 

which the technology is viable was also provided. Furthermore, links to further information about each 

technology have been added to give interested users an entry for their research. 

The collected results are publicly available on the MergData platform from Farmerline and can be 

viewed and searched in the technology section of the database query. In order to provide each user 

with clear options for narrowing down the search results, multiple search filters can be set. An example 

is given in Figure 2. 

Figure 2 Technology entries provided on the MergData Plattform sorted by 'Category' 

In Table 2, an overview of the same technologies is provided summarized for each category in absolute 

numbers. For some technologies, multiple entries have been used so that the sum of all technology 

entries in this table does not correspond to the total number of researched technologies. 

Technologies were categorized into 17 groups: Insect detection, crowd sourcing, disease detection, 

DIY hardware schemes, irrigation, farm management, fertilizer calculator, livestock management, 

nutrient calculator, positioning, reacting or variable rate technology, recording or mapping technology, 

remote sensing data analysis, robotic system or smart machine, soil sampling, spray and weather app 

and stress detection. The number of technologies varies between the different categories. For the 

categories farm management, reacting or variable rate, recording or mapping technology and robotic 

system or smart machine, the most entries were found because currently there is a strong 

technological development for improving farm management systems with geographical information 
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systems and precision agriculture technologies going on in Europe. In the categories of insect 

detection, crowd sourcing, disease detection, irrigation, nutrient calculator, positioning and remote 

sensing data analysis less entries were found but were still quite represented. In contrary, the 

categories DIY hardware schemes, fertilizer calculator, livestock management, soil sampling, spray and 

weather app and stress detection were hardly represented with less than or equal to five technologies. 

They are mostly niche developments but may still be of interest to the specific case of smallholder 

farmers.   

Table 2: Smart Farming technology database results summarized by categories 

No Categories Technology entries 

1 Insect detection 11 

2 Crowd sourcing 9 

3 Disease detection 10 

4 DIY Hardware schemes 1 

5 Irrigation 26 

6 Farm management 215 

7 Fertilizer calculator 4 

8 Livestock management 2 

9 Nutrient calculator 22 

10 Positioning 44 

11 

Reacting or variable rate 

technology 110 

12 

Recording or mapping 

technology 193 

13 Remote sensing data analysis 9 

14 

Robotic system or smart 

machine 106 

15 Soil sampling 4 

16 Spray and weather app 3 

17 Stress detection 5 
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In the following, the technology categories are discussed individually. In particular, the possibility of 

the adaptation in the core communities will be considered.   

3.2 Proposed technologies for SIA 

3.2.1 Insect detection 

Several developments are available for insect detection. There are solutions for hive detection in large, 

precision farms and several solutions for insect traps with species recognition support. The latter can 

help with farm management and biodiversity assessment. Potential camera-based deep-learning 

insect traps such as Z-Trap or BEECAM are often equipped with App integration for smartphones and 

can help to keep track of beneficial or harmful insects. In this way, they could be a step toward 

improving food security in core communities.   

Plant Village Nuru App is an assistant based on artificial intelligence that can identify multiple diseases 

and insect pests. For example, it is capable of identifying infections by the fall armyworm and combines 

it with crowd sourcing data integration. With its affordable pricing, its integration of open access 

platforms and the possibility for language adaptations on a local level, it becomes of high interest for 

core communities in the SIA project.   

3.2.2 Crowd sourcing 

Crowd sourcing technologies are certainly the most important category for the SIA project because it 

was developed specifically for small-scale farming structures in mind. For this category, eight entries 

were found. The goals of these technologies are often to strengthen the knowledge base of 

smallholder farmers, build stakeholder networks, and assist in farm management decisions. TSo 

achieve a high level of dissemination among the target groups, most of these technologies do not 

require high investment costs.   

399# service is an information providing service in Ghana already working. It is specialized for 

smallholder farmers and works with any kind of mobile phone. The same applies to iCow, a similar 

information platform via SMS. Here, the farmers register their cows individually via the iCow App and 

from then on the app supports them with cow husbandry. It is specialized for smallholder farmers. The 

data collected is shared and everyone is advised on cultivation decisions as needed. So far, the service 

has been made available in Kenya, Ethiopia and Tanzania. 

Another important development is the establishment of farmer-seller networks. In this way, the profit 

of the harvest and thus food security can be ensured. Examples of such systems are M-Farm or 

WeFarm, which are offered in Kenya. Slightly different networks are created with the Plantwise app 

from the Centre for Agricultural Bioscience International (CABI). Here, farmers all over the world, who 

seek for help, will be connected with local agricultural extension services or trained plant health 

experts. In this way, diseases can be diagnosed and best practice recommendations can be made 

directly to the farmer. Another service is Ushahidi's open-source solution, which uses a variety of data 

inputs (SMS, Twitter, web forms) to collect and analyze simple data. In this way, for example, an 

overview of the course of a disease spread in the field can be tracked. Furthermore, Plant Village Nuru 
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AI, mentioned already in section 3.2.1, shares information via crowd sourcing to other users. One 

downside is that these technologies need internet access to work properly. 

3.2.3 Disease detection 

Originally, sensor networks for disease prediction and modeling for species are mainly developed for 

western farmers. These tools and associated services come with high investment and maintenance 

costs. Therefore, these sophisticated tools are mainly unattainable for the targeted core communities 

of the SIA project. However, for regions where smartphones are already widely used with internet 

access, there are now viable and cost-effective options available. Open source apps can be a good 

choice for disease detection and prevention. Stress symptoms can also be detected in various field 

crops. These applications usually store an image and compare it with previously trained artificial neural 

networks. A representative of this category is, among others, the Plantix app, which globally collects 

more and more images for training the disease detection algorithms. The App can also analyze cotton, 

corn, mango, millet, okra, olive and sorghum, among others. Almost all target crops of the SIA project, 

except for pineapple, can be analyzed. Another option for a broader use is the Xarvio Scouting App, 

which detects diseases and leaf damages independent from the plant species as well as the Plant 

Village Nuru AI, mentioned in section 3.2.1, which is capable to detect diseases, for example in cassava 

crops. 

3.2.4 DIY hardware schemes 

The DIY Hardware schemes is an example of a niche technology so far. However, 3.2.1 DIY hardware 

schemes project is a powerful lever to support import-independent, long-lasting agricultural 

development in the core communities. This unique project offers the possibility to build 50 machines, 

including tractors, automatic harvesters, or well drilling rigs, making the purchase of these machines 

much cheaper and at the same time creating the necessary knowledge for repairs and maintenance. 

3.2.5 Irrigation 

Precision agriculture in the field of irrigation is not a novelty for western farmers. Developments in 

smart farming include sensor stations for weather recording and hydrological applications (Dacom 

Online Irrigation Management, Vinduino R3 Sensor Station; John Deere Field Connect), programming 

or controlling flexible irrigation systems (ART3 Agro; SmartRain App; GROWSMART; Weenat; Agsense 

app, Irrigamatic, Irrigation Management) or setting up and reading complex sensor networks for the 

purpose of spatially differentiating soil moisture or plant water content across the site (Digital TDT Soil 

Moisture Sensor; YARA WATER SENSOR; Soil Moisture Probes; Pro Series Soil Sensor; Sensetion). Also, 

the adaptive irrigation systems themselves are sold on the western market, e.g. HydroPlus - Smart 

Remote Management Irrigation System, PESSL INSTRUMENTS PRESSURE SWITCH, Rainbird Products. 

However, these are often sophisticated systems that are expensive to purchase and operate. 

Therefore, they are not considered for smallholder farmers.  

External consultants are working with farmers in Europe and elsewhere to install precision irrigation 

on agreed target areas. One agent, for example, is TERRAPRO TECHNOLOGIES or the Dacom Farm 
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Intelligence. Such partnerships are also possible on a limited scale for smallholder farmers in Northern 

and Western Africa.  

The partner in the SIA project, BluLeaf, provides the necessary technology for irrigation planning, 

including a smartphone application for monitoring and displaying the collected data. The Italian 

company also offers workshops for interested farmers on how to use the new technology. In the 

further course of the SIA project, BluLeaf will be used in selected core communities and tested for its 

suitability and adapted if needed. 

In addition, technologies such as solar-powered water pumps could be of interest to farmers 

participating in the SIA project (e.g. Solar Pumping Arateck). They operate independently of the power 

grid and could lead to savings in labor time where laborious manual irrigation is required. 

3.2.6 Farm- or Livestock-management 

The category farm management is often mixed with other categories. Since technologies with multiple 

categories that include farm management are discussed in the respective other sections, only database 

entries that exclusively carry this feature are discussed in the following.  

Often, technologies in this category are used to combine different smart farming technologies (e.g. 

Nexxtep Technologies; Wi6labs; farm+; Virtual Optimizer Pro; Sensordata applicatie) or to better 

manage the various tasks of a large farming operation (e.g. CropTrak Solution Platform, INPULSE). 

Some applications also simplify the optimization of existing vehicle fleets and their interaction (e.g. 

EASY Farm Telematics, AFS Connect - PLM Connect, SAMSYS-Activity) or create a possibility for remote 

control of various smart farming devices via the internet (John Deere MyJobConnect package; 

FarmCommand). In order not to lose track of one's own products from harvest to retail and to be able 

to display required certificates if necessary, there are also tracking apps such as the Internet-of-Crops™ 

platform, among others. However, since smallholder farmers in northern and western Africa do not 

own large fleets of vehicles nor large fields, these technologies are mainly not of interest to the SIA 

project. 

More interesting, however, are technologies that deal with networking farmers with other 

stakeholders, such as suppliers, consultants, retailers, seed or fertilizer manufacturers. These 

technologies already exist for the Western market, such as cumalink, and there are some African 

applications of this type already available (iCow). Farmer-farmer networking, such as Agrifind: Shared 

Field Expertise on the Western market, also provides a helpful source of information, but is closer to 

the crowd sourcing category. Such networks can also educate on legal issues and answer local inquiries 

about laws, such as agricultural fertilizer norms. To ensure that the farmers' business model remains 

more resilient against climate change, external consultants, such as ClimaVista BI from France, provide 

a cloud-based climate risk management solution could be consulted. Such companies could have a 

major impact on food security because they can provide projections on the impact of regional climatic 

changes for farms. 

Most livestock technology solutions are designed for large farms with large herds (e.g. FarmRexx) and 

may be too complicated for smallholder farmers. An interesting service, however, is Cowtribe, which 

connects local veterinarians with farmers to get them informed about critical conditions or 

vaccinations. The Cowtribe service is providing contacts, logistics and services for Ghanaian farmers.  
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3.2.7 Nutrient calculator 

Fertilizer calculation is mostly about how much fertilizer needs to be applied to deliver the right 

amount of fertilizer based on a soil sample analysis (e.g. Fertilizer Calculator; Organic Calc; Fertilizer 

removal by crop; Crop nutrient removal calculator; FertiMatch). In some cases, the application rate is 

also calculated based on sprayer attributes (e.g. Cali Calc). The app Plantix could be of interest for 

smallholder farmers because it derives fertilizer requirements for plants based on simple smartphone 

images. Typically, smallholder farmers in Western and Northern Africa cannot afford large amounts of 

fertilizer. Therefore, there tends to be an undersupply of fertilizers, whereas these calculators aim at 

optimal fertilization. The CowPoopAnalyzer is another interesting app. The app uses smartphone 

images to compare cow dung with an online image database to estimate certain nutrient levels. The 

Yara CheckIT app can also be helpful for smartphone owners, as it detects nutrient deficiencies in 

plants free of charge. In this way, fertilization can be readjusted at the most critical points. 

3.2.8 Positioning 

Global Navigation Satellite Systems (GNSS) are widely used in Western agriculture for positioning. They 

provide, for example, the basis for site-specific applications in precision agriculture. Common and 

widely used are simple GNSS devices using the bare signals from the different satellite navigation 

systems (e.g., GPS and GLONASS). They provide low spatial accuracy with a few meters of uncertainty. 

More advanced systems make use of the correction signals from ground stations with real-time 

kinematics (RTK), which provide higher spatial accuracy in a range of a few centimeters (e.g., John 

Deere Radio RTK; The Precision Farming BOX; ISA360). Often, such systems are available as an internal 

control when selling large agricultural machinery or offered for retrofit (e.g. AutoTrac; Wingssprayer; 

TRUAS TrueAgriculturalSensing; Farmsat Mapping Application; AutoTrac Vision). Combined with 

recording and mapping technology some systems can help to keep track of the growth and health 

status of the crops or other site-specific conditions (e.g. Agriculture Remote Aerial Sensing; Parrot 

SEQUOIA). In order to keep track of the now numerous systems and their collected georeferenced 

data, cloud solutions for the storage and clear presentation of the results are already offered on the 

western market (e.g. Dacom Cloudfarm). 

For positioning technologies it can be concluded that this form of support is currently unsuitable for 

smallholder farmers in West and North Africa. The benefit only arises when the land to be cultivated 

is very large, which farmers in the core communities do not hold. Such systems are also very expensive 

to purchase and to operate, as monthly costs are often incurred for services such as subscription offers 

for e.g. correction signals. 

3.2.9 Reacting or variable rate technology 

Responding to spatially discrete environmental or plant condition is the key cocept behind precision 

crop management. In this way, raw materials, such as water or fertilizer, can be saved, while at the 

same time yields are improved in their quantity and quality, through a more precise demand response. 

Also spraying agents can be applied precisely, or seedlings planted more accurately. As mentioned in 

section 3.2.8 Positioning, such on-demand working systems are often directly combined with 
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positioning systems. These sophisticated systems are mostly automated and optimized for field crops 

that are common in the western market. They also develop their strength only with extremely large 

cultivated areas. Described systems are e.g. CropSpec, DynamicDosePlus, Weenat, ISOBUS PLANTER-

Controller or SPREADING LIQUID MANURE. These kind of systems are also available as add on 

technology for outdated hardware (Smart Ball Valve; ISOBUS DISTANCE-Control I und II; TARGIS-VRA; 

Delvano Nozzle Control) but have high investment costs. Also, there are online in cloud calculation 

tools such as Agriculture Remote Aerial Sensing, which can help optimizing, e.g. sprayer agents or 

fertilizer inputs, using remote data. Those technologies rely on monthly payments, which are hard to 

earn or justify for African smallholder farmers. However, there are some pricy alternatives  such as the 

Spray Calc system. But even these systems require mechanized, GNSS-located spreaders. However, 

because such systems are not usually found in the core communities, these cost-free solutions are not 

applicable either.  

3.2.10 Recording or mapping technology 

Recording or mapping technologies have a high overlap with sections 3.2.9 reacting or variable rate 

technology and 3.2.6 farm management, as these systems are often combined. This results in decision-

support applications that can also provide an overview of past developments of an individual farmers 

agricultural land, and thus present trends in a clearer way.  

Classic applications in the western agricultural market are the recording and mapping of small-scale 

climatological differences using mobile climate stations (e.g. Rainwise, CimAGRO; TWRS Wireless 

RainSensor), the sub-area-specific storage of yields (e.g. HarvestDoc) or the usually legally required 

documentation of crop protection spraying (e.g. RRXtend Spray app). Furthermore, various devices are 

offered for the determination of sub-area-specific plant health. For such monitoring, there are adapted 

hyperspectral cameras (e.g. Hyperspectral camera for plant health monitoring), sophisticated drone 

solutions (e.g. AIRPHEN, AgroDrone) or ground-based autonomous robots (e.g. PHENOMOBILE). 

Another application is soil nutrient calculators (e.g. Solum; SoilCares Scanner). They estimate the 

current soil nutrient content based on the management decisions made and the yields achieved. The 

following management decisions can then also be derived from this.  

A similar tool of interest to the SIA project would have been the compostmeter, for determining the 

organic carbon content of composted household residues. Unfortunately, the associated project has 

been stopped, making it currently difficult to obtain the necessary measuring probes. Combined 

systems for recording soil temperature, soil moisture and soil salinity (e.g. SOIL MOISTURE SENSOR; 

Sentek Soil Moisture Monitoring) could also be of interest to smallholder farmers in West and North 

Africa. By analyzing soil parameters over a long period of time, processes that are difficult to reverse, 

such as the salinization of fertile soil, can be detected in advance and prevented through appropriate 

management. 
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3.2.11 Remote sensing data analysis 

Remote sensing data from various satellite systems, some of which are freely available, offers the 

possibility of providing farmers with evaluation algorithms for these data. Specializing in agricultural 

applications, according to the companies, plant health, stress influences or plant diseases can be 

detected and thus management decisions can be derived at an early stage. The underlying satellite 

data is sometimes even collected on a daily basis (e.g. Agriquest Global Monitoring; Cropwise Imagery, 

ANA - Agricultural Nutrient Assistant). The Space4good system is another such development. In 

addition to applications for precise agriculture, it also offers trained systems for the assessment of 

ecosystem services, which is why it is particularly suitable for use in the SIA project.  

Another application is the creation of topographic maps (e.g. land leveling) which can also be combined 

with spatially resolved soil mapping (e.g. TrimbleSoil Information System). Furthermore, there are 

applications that facilitate the acquisition of remotely sensed data. Flight planning of a drone can be 

automated (e.g. FieldAgent app; Atlas Flight) or satellite data can be automatically cropped and stored 

based on entered field boundaries (e.g. SatHarvest API). 

Autonomous satellite terminals can help connecting remote areas to the internet (e.g. MF 400 IoT 

Satellite bridge). In this way smart farming devices, which often rely on internet connections, can be 

made accessible for icloud analyzing or storing. This can also be a solution for remote communities 

without internet access to enable the use of open-source app technology. 

3.2.12 Robotic system or smart machine 

One of the biggest recent developments occurred in the robotic system, or smart machine category. 

With ever increasing computing power, even of mobile systems, and the development of trained 

artificial intelligences for agricultural applications, numerous technical solutions have become 

possible. Agricultural machines were redesigned or upgraded to be controlled remotely (e.g. icut 

vision), or to set driving parameters themselves (e.g. iTEC Pro; Tractor Implement Automation). Sensor 

inputs for precision farming approaches can now be evaluated directly while driving and the smart 

machine reacts without further intervention by the farmer (e.g. Rometron WEEDit; FertiSystem; See & 

Spray; Autonomous robot weeder). Land grading (e.g. iGrade) or adaptations of agricultural spraying 

systems (e.g. Shielded sprayers, Delvano Dual Fluid Control; PiiX - Direct injection Unit for sprayers) as 

well as planting robots (e.g. Contour Farming), have also been developed. Another application is smart 

weather analysis stations (e.g. Smart Connect Wireless Weather Sensor; TRS Wired RainSensor). To 

keep track of the collected information and to pool the resulting knowledge, some systems deal with 

the display and combination of data from multiple sources (e.g. HummBox, SMART430®; 

My.Luda.Farm; FLIPAGRI; IsoMatch Tellus). In general, the developers of these technologies assume 

that agricultural machinery, sensors, or at least sufficient computing power and a good infrastructure 

for power and internet connection already exists in the farm. Thus, the technologies in this category 

are predominantly not well suited for farmers in the targeted core communities.  

An exception to this could be drone applications (UAV), as here a large number of farmers could benefit 

from the collected data at a relatively low cost. The development of smart UAV and associated 

software (e.g. eBee SQ; Stratus, Sprinkler drone) could benefit farmers in West and North Africa as 

well as the development of service providers that offer UAV applications to the farmers.  
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To reduce the downtime and to improve the distribution of tractors, a start-up in Nigeria offers the 

Hello Tractor app. Farmers can book tractor times, tractor owners receive orders and there are options 

for fleet maintenance. The IoT concept therefore connects small farmers with the necessary service 

providers and makes effective use of existing local hardware. 

3.2.13 Soil sampling 

Automated soil sampling systems make it easier for Western farmers to distribute samples to ensure 

sufficient coverage and uniform distribution of measurement points. Automated systems are available 

that reduce the labor input needed for manual sampling (e.g. AutoProbe Automated Soil Sampling 

Technology; falcon automated soil sampling). So far, these systems have not addressed farmers in 

western and northern Africa. Soil sampling apps (e.g. Sirrus; Soil Test Pro) are better suited for 

improving soil sampling. However, they require smartphone or tablet technology and a sufficient 

connection to the internet. These software solutions help with equipment procurement, sampling and 

finding a suitable laboratory for soil analysis.  

3.2.14 Spray and weather app 

Since many agricultural management decisions depend on climate data, in western agriculture the 

prevailing microclimate is measured mainly by means of climate stations installed in the field. These 

stations can also be used to improve the general weather forecast (e.g. climate monitoring tools). 

However, the quality of such a forecast depends on the density of measuring stations. Therefore, app 

technology for forecasting weather in Africa can probably only work with a reduced accuracy. 

Nevertheless, in regions with the required technology and infrastructure, important events may be 

estimated. When developed for agricultural purposes, weather apps often provide recommendations 

for pesticide spraying or other decisions (e.g. RRXtend Spray app).   

3.2.15 Stress detection 

One smart technology being developed to detect early stress indicators in western agriculture is the 

use of high-resolution UAV imagery in addition to climate stations (e.g., Climate Monitoring tools) or 

dendrometers (e.g., PESSL INSTRUMENTS DENDROMETER). The high sensor flexibility plays a major 

role, as does the advantageous ratio between spatial resolution and area coverage per flight. Many 

service providers develop on the UAV use in agriculture now, like e.g. crop stress mapping or yield 

estimation (e.g. AgroDrone, AgriSens; TRUAS TrueAgriculturalSensing). Communities in western and 

northern Africa, such as those involved in the SIA project, could contract third-party providers to fly 

the areas of several smallholders to make this technology available.  

For extended analyses of the recorded data, aggregating and analyzing systems are used (e.g. Sigfox; 

Integrated Analytics Platform; cropwin). However, these are likely to be too expensive for the 

operation by smallholder farmers. There are, however, smart phone app based alternatives for these 

servoces, which are affective and free of charge. They use the smartphone as sensor, for example, by 

detecting plant stresses on the basis of RGB imagery (e.g. Android-based rice leaf color analyzer). The 

Xarvio Scouting app is claimed to be able to determine the nitrogen content of a leaf using smartphone 
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imagery. Of course, this requires smartphone technology as well as a stable internet connection, as 

these programs compare the images taken with an online database.  

3.2.16 Conclusion 

Technologies suitable for smallholder farmers in North- and West Africa can be either: relatively simply 

to implement, granting access to fast benefits; can be more extensive, such as for determining resilient 

food security under climatic change; or can increase yields and profits in general. Simple technologies 

to be introduced in the agricultural management of the targeted core communities should certainly 

not have high demands on the computing power. For remote regions, it would be optimal to be 

independent of a continuous power supply and internet connection. Furthermore, proposed 

technologies must not lead to high investment or operating costs. However, even free apps could lead 

to inappropriately high investment costs because it cannot always be assumed that modern 

smartphones will be available. Here, initiatives can help with the investments for some of the farmers. 

Simple technologies have been partially already implemented, e.g. for crowd sourcing tools using 

mobile phones to support smallholder farmers, for better farm management or networking. Free app 

technology and remote sensing from UAV and satellites deliver a timely assessment of plant health 

and nutrition status. Smallholder field structures are very heterogeneous and field sizes are relatively 

small so that remote sensing approaches must provide a high-spatial resolution, in order to deliver 

data that can be evaluated profitably. As shown in chapter 2.3 this approach can be suitable.  

More problematic are technologies for variable rate technologies or robotic systems, which are highly 

developed systems that could increase yields while reducing inputs. However, this would include high 

investment cost for implementation. For smallholder farmers, more interesting technologies would 

include apps that help to determine stress symptoms, low budget fertilizer maps generated by remote 

sensing data, or low-cost irrigation information systems.  Machine sharing or provision of agricultural 

services would also be a viable option to reduce investment costs and facilitate access to more 

sophisticated technology at the same time. For example, the use of drones could be disseminated by 

a network of agricultural service providers. 

However, whether a technology can be implemented does not ultimately determine the success of the 

adoption by the smallholder farmers. To be able to offer useful targeted technologies, it is necessary 

to understand the needs and concerns of local smallholders. Therefore, technological implementation 

must be aware of local requirements, and introduced with professional support and training. 

Otherwise, there is a risk of a low adoption rate and a lack of success of a program. Moreover, there is 

a need to understand cultural appreciation and conditions to introduce and adapt technologies. 
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4. Companies, Initiatives and Projects

4.1 General database summary (Companies, Initiatives, Projects) 
The published database contains 289 companies that produce and develop technology or software in 

the field of smart farming. All contact details of the listed companies were collected and published on 

the MergData platform.  

In addition, 30 initiatives and projects were included in the database with information on the name, 

the organizing institute and its headquarters, the focus of the project as well as a brief description of 

the project and a weblink to the project's respective online presence.  

Interesting projects within the framework of the SustInAfrica project deal, for example, with long-term 

and cost-effective soil improvement through legume-based nitrogen enrichment for smallholder 

farmers (N2Africa) or with scaling up successfully adopted technologies leading to large-scale 

production increases in Liberia and the Congo (Africa Feeding Africa/ Technologies for Africa's 

Agricultural Transformation). The Smallholder Agriculture Development Project promotes information 

transfer to smallholder farmers for the purpose of increasing the market value of crops. UAV service 

providers (Transforming Africa's agriculture: Eyes in the sky, smart techs on the ground) also serve to 

provide farmers with training and information on drone use. Another project focused on operating 

their own low-cost developments (Beyond flying UAVs in smallholder farms). In the PlantVillage Nuru 

project, an AI-based smallholder APP was developed against pest and diseases. 

Many projects deal with networking between farmers and stakeholders and with information 

dissemination to farmers for the purpose of improved profitability of products or for possible credit 

loans (Agricultural Research and Training Project; Financial Inclusion for Smallholder Farmers in Africa 

Project). Networks among farmers are also being strengthened and crowd sourcing approaches can 

even be used to specify weather forecasts at low cost (Ranet). Another area of work for projects and 

initiatives is increasing the resilience of smallholder farming to climate change. The West African 

Initiative for Climate-Smart Agriculture is improving information sharing to help transform agricultural 

production towards a climate smart agriculture approach. A similar approach is followed by the 

Program for Climate-Smart Livestock Systems in the livestock sector. Projects such as INSARD and the 

Competitive African Cotton Initiative are working to adapt future technologies and policy reforms to 

the needs of smallholder farmers. 

4.1 Collaboration to Smart4All Project 

In addition to the aggregated projects in the database, a collaboration with the EU-funded SMART4ALL 

project (Project Number: 872614) has been established. SMART4ALL builds capacity amongst 

European stakeholders via the development of self sustained, cross-border experiments that transfer 

knowledge and technology between academia and industry. It targets customized low energy 

computing (CLEC) cyber-physical systems (CPS) and the IoT and combines a set of unique 

characteristics that join together under a common vision different cultures, different policies, different 

geographical areas and different application domains. SMART4ALL brings a new paradigm for revealing 

“hidden innovation treasures” from south east Europe (SEE) and helping them to find the path to 

market via new, innovative commercial products. As part of its strategy, the project will develop and 

maintain an active network of digital innovation hubs (DIHs) across SEE for supporting academics, 

startups, small and medium scale enterprises (SMEs), and mid-caps entering the digitization era. The 
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mechanisms for achieving this are the design and implementation of 88 cross-border pathfinder 

application experiments (PAEs) that will be executed by the consortium members and by 3rd party 

consortia (academics, companies and mid-caps). The latter will be supported via well-defined regular 

open calls and will have a day by day coaching by SMART4ALL consortium for boosting the research 

ideas to successful products. PAEs will be actively supported by SMART4ALL DIH cluster throughout 

and after their execution. The targeted application areas are domains that are not adequately 

represented in current smart anything everywhere initiative (SAE) projects and include digitized 

environment, digitized agriculture, digitized anything and digitized transport. SMART4ALL introduces 

also the concept of marketplace-as-a-service (MaaS) that acts as one-stop-smart-stop of SMART4ALL 

DIH cluster for offering tools, services, platforms based mainly on open sources technologies as well 

as technology suppliers-adopter matchmaking capabilities customized to the four thematic pillars of 

the project. Finally, SMART4ALL plans horizontal activities that will support the Digital Skills Agenda of 

European Commission (EC) and the support of sensitive social groups via ideas and products that have 

significant impact on their lives. In collaboration with SustInAfrica, the collected databases from both 

projects are linked to each other. In that way, combined findings are accessible for interested 

stakeholders browsing one of the databases. In SMART4ALL a database entry for the SustInAfrica 

database is created and in SustInAfrica a web URL to the SMART4ALL database is given. 

Figure 3: SMART4ALL Marketplace as a Service Conceptual Architecture 
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5. Database

5.1 Objective of the database 
The database aims to provide an overview of the latest developments in agricultural processes and 

applications in the field of smart farming and monitoring technologies. The database was designed and 

organized by Farmerline and integrated in their Mergdata Platform. The database will be linked to 

information managed within Farmerline`s Mergdata platform on farming systems. The Mergdata 

platform provides a farm data management tool for gathering and analyzing information on farmers, 

farms and treatment at every stage of the supply chain. The integrated smart farming and monitoring 

database is openly available and can be easily browsed to extract relevant information for the 

stakeholders. Furthermore, stakeholders can add entries regarding smart farming technologies 

interesting for smallholder farmers of the core communities. Researcher partners in the SustInAfrica 

project are in addition able to add entries of related scientific publications in the database.  

5.2 Setup process of the database 
Mergdata is a data collection, dissemination, and analytics platform built by Farmerline that will 

support the SustInAfrica project. Mergdata is built upon a reliable and centralized database system; to 

facilitate the electronic capture, storage (i.e. data secure system) and utilization of stakeholder data 

and conduct surveys as well as join and visualise spatial and non-spatial information. Mergdata has the 

capability to aggregate data related to customer profiles, surveys, maps, traceability, and other vital 

metrics. The application is web-based and is accompanied by an Android application to be used by field 

agents and enumerators. The web platform provides users with the tools to create and analyse data 

collected with the Android app. Data entry while considering protection of personal data can be done 

in three ways, either: I) using the Mergdata web form of Farmerline (Annex 1), or II) using the Android 

app or III) using the Excel import (Annex 2) and upload the information directly to Mergdata. The 

Mergdata Web Platform runs in a web browser. It is compatible with browsers like Google Chrome, 

Mozilla Firefox, Safari, Opera, and Microsoft Edge etc. It is a web-based application, so it can run on 

any device with browser capability e.g., desktop computers and laptops. Mergdata Android app runs 

on all Android devices (mobile and tablet) with the minimum software version of Android 5 (Lollipop). 

5.2 Access to database 
In the SustInAfrica project, the information among consortium participants or other stakeholders will 

be accessed through a web portal and/or application programming interface (API) integration for 

applications to exchange data and information automatically. Users require a username and password 

to access the platform. Each partner will have access to add and consult data. Data introduction will 

be done through a set of sequential webforms that present the fields necessary for data entry (See 

Annex 3). The following link to the webform can be circulated for stakeholders to voluntarily provide 

their details; Stakeholders Database 

Partners can also download the Android app from the Google Play store (see link below) and login with 

the access details provided to be able to fill in the form. Below is the link to the Mergdata android app 

on Google Play Store (https://play.google.com/store/apps/details?id=com.mergdata). 

https://app.mergdata.net/surveys/webforms/form/b79e6913-90c8-44cf-9ffd-baa6ebfd34c2/start/MTYzNDc0MTM0MS42ODU0
https://play.google.com/store/apps/details?id=com.mergdata
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Annex 1 Sub categories chosen for recent research activities 
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Figure 4. Keyword-Mindmap for recent research investigation of smart farming. (Blue color indicates chosen keywords after discussion with several partners (ATB, BOKU)) 
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Annex 2 Findings for recent research activities in ISI Web of Knowledge all collections 
Table 3. Sub keywords, filters, search strings and findings for ecosystem services in the Web of Knowledge Core collection. 

Smart Farming - 
Subkeyword 

Main Keyword 
(Targeted 
variable) 

Filter 
Sub-search 

strings 
with Filter 

(16.02.2021) 

with filter + 
small holder 
(16.02.2021) 

Searchstring with small 
holder (23.03.2021) 

- None -

"ecosystem 
service" 

Agri*; 
Farm*; 
Horti*;  

livestock; 
crop;    
field; 

orchard; 
(small 

holder) 

23465 513 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Information and 
Communication 
Technology / ICT 

9 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=(ICT OR "Information 
and communication technology") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Smart farming 4 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("Smart farming") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

4.0 technology 0 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("4.0 technology") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Precision 
agriculture / 
Precision 
farming 

61 2 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("precision agriculture" 
OR "precision farming") AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard) AND TS=(smallholder 
OR "small holder")  

Cloud 
Computing 

13 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("cloud computing") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Mobile phone / 
App 

19 1 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("mobile phone" OR 
App) AND TS=(Agri* OR Farm* OR Horti* 
OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder")  

Artificial 
Intelligence (AI) 

60 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("artificial intelligence" 
OR AI) AND TS=(Agri* OR Farm* OR Horti* 
OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Big Data 43 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("big data") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Data Science 2 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("data science") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Deep learning 14 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("deep learning") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Machine 
learning 

80 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("machine learning") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  
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Internet of 
things / IOT 

2 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("internet of things" OR 
IOT) AND TS=(Agri* OR Farm* OR Horti* 
OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Smart control / 
smart 
technology 

0 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("smart control" OR 
"smart technology") AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard) AND TS=(smallholder 
OR "small holder")  

Sensor 87 1 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("sensor") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

Robotics 3 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("robotics") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

smart sensing / 
smart 
monitoring 

disease 
detection, 

weed 
detection, 

plant 
health 

40 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("smart sensing" OR 
"smart monitoring" OR "disease 
detection" OR "weed detection" OR 
"plant health") AND TS=(Agri* OR Farm* 
OR Horti* OR "livestock" OR crop OR field 
OR orchard) AND TS=(smallholder OR 
"small holder") 

Sensor network 2 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("sensor network") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Crowd sourcing 2 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("crowd sourcing") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

Greenhouse 
computer 

0 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("greenhouse 
computer") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Site specific 247 3 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("site specific") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Variable rate 2 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("variable rate") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Projection / 
Prediction 

783 7 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=(projection OR 
prediction ) AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Farm 
management 
information 
system / FMIS 

Yield 
estimation, 

LAI 
estimation, 

10 2 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("farm management 
information system" OR "FMIS" OR "yield 
estimation" OR "LAI estimation") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Remote Sensing 1463 22 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("remote sensing") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 
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Drone / UAV 48 1 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("drone" OR "UAV") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Satellite 862 10 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("satellite") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Photogrammetry 27 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("photogrammetry") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Image Analysis 88 2 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("image analysis") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Image 
recognition 

14 1 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("image recognition") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Spectral index 2 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("spectral index") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Vegetation index 243 3 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("vegetation index") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

LiDAR 179 2 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("LiDAR" OR "lidar" OR 
"LIDAR") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Ultrasonic 6 0 

TS= ("ecosystem service" OR "ecosystem 
services") AND TS=("ultrasonic") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Table 4 Sub keywords, filters, search strings and findings for productivity in the Web of Knowledge Core collection. 

Smart Farming - 
Subkeyword 

Main Keyword 
(Targeted 
variable) 

Filter 
Sub-search 

strings 
with Filter 

(16.02.2021) 

with filter + 
small holder 
(16.02.2021) 

Searchstring with small 
holder (23.03.2021) 

- None -

productivity 

Agri*; 
Farm*; 
Horti*;  

livestock; 
crop;    
field; 

orchard; 
(small 

holder) 

261396 4338 

TS= (productivity) AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard)  AND 
TS=(smallholder OR "small holder")  

Information and 
Communication 
Technology / ICT 

316 28 

TS= ("productivity") AND TS=(ICT OR 
"Information and communication 
technology") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Smart farming 61 2 

TS= ("productivity") AND TS=("Smart 
farming") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

4.0 technology 0 0 

TS= ("productivity") AND TS=("4.0 
technology") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 
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Precision 
agriculture / 
Precision 
farming 

1144 13 
TS= ("productivity") AND TS=("precision 
agriculture" OR "precision farming") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

Cloud 
Computing 

83 0 

TS= ("productivity") AND TS=("cloud 
computing") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Mobile phone / 
App 

254 17 

TS= ("productivity") AND TS=("mobile 
phone" OR App) AND TS=(Agri* OR Farm* 
OR Horti* OR "livestock" OR crop OR field 
OR orchard) AND TS=(smallholder OR 
"small holder")  

Artificial 
Intelligence (AI) 

1021 32 

TS= ("productivity") AND TS=("artificial 
intelligence" OR AI) AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard) AND TS=(smallholder 
OR "small holder") 

Big Data 193 5 

TS= ("productivity") AND TS=("big data") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Data Science 19 0 

TS= ("productivity") AND TS=("data 
science") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Deep learning 117 2 

TS= ("productivity") AND TS=("deep 
learning") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Machine 
learning 

386 4 

TS= ("productivity") AND TS=("machine 
learning") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder")  

Internet of 
things / IOT 

234 1 

TS= ("productivity") AND TS=("internet of 
things" OR IOT) AND TS=(Agri* OR Farm* 
OR Horti* OR "livestock" OR crop OR field 
OR orchard) AND TS=(smallholder OR 
"small holder") 

Smart control / 
smart 
technology 

25 2 

TS= ("productivity") AND TS=("smart 
control" OR "smart technology") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

Sensor 1829 4 

TS= ("productivity") AND TS=("sensor") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

Robotics 195 1 

TS= ("productivity") AND TS=("robotics") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

smart sensing / 
smart 
monitoring 

disease 
detection, 

weed 
detection, 

plant 
health 

451 4 

TS= ("productivity") AND TS=("smart 
sensing" OR "smart monitoring" OR 
"disease detection" OR "weed detection" 
OR "plant health") AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard) AND TS=(smallholder 
OR "small holder") 

Sensor network 99 1 

TS= ("productivity") AND TS=("sensor 
network") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Crowd sourcing 6 0 

TS= ("productivity") AND TS=("crowd 
sourcing") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder")  
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Greenhouse 
computer 

0 0 

TS= ("productivity") AND TS=("greenhouse 
computer") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Site specific 1796 55 

TS= ("productivity") AND TS=("site 
specific") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Variable rate 200 0 

TS= ("productivity") AND TS=("variable 
rate") AND TS=(Agri* OR Farm* OR Horti* 
OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Projection / 
Prediction 

7452 77 

TS= ("productivity") AND TS=(projection 
OR prediction ) AND TS=(Agri* OR Farm* 
OR Horti* OR "livestock" OR crop OR field 
OR orchard) AND TS=(smallholder OR 
"small holder") 

Farm 
management 
information 
system / FMIS 

Yield 
estimation, 

LAI 
estimation, 

175 7 

TS= ("productivity") AND TS=("farm 
management information system" OR 
"FMIS" OR "yield estimation" OR "LAI 
estimation") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Remote Sensing 4191 50 

TS= ("productivity") AND TS=("remote 
sensing") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Drone / UAV 210 3 

TS= ("productivity") AND TS=("drone" OR 
"UAV") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Satellite 3367 36 

TS= ("productivity") AND TS=("satellite") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Photogrammetry 64 0 

TS= ("productivity") AND 
TS=("photogrammetry") AND TS=(Agri* 
OR Farm* OR Horti* OR "livestock" OR 
crop OR field OR orchard) AND 
TS=(smallholder OR "small holder") 

Image Analysis 407 1 

TS= ("productivity") AND TS=("image 
analysis") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Image 
recognition 

64 1 

TS= ("productivity") AND TS=("image 
recognition") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Spectral index 48 0 

TS= ("productivity") AND TS=("spectral 
index") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Vegetation index 1732 15 

TS= ("productivity") AND TS=("vegetation 
index") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

LiDAR 239 0 

TS= ("productivity") AND TS=("LiDAR" OR 
"lidar" OR "LIDAR") AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard) AND TS=(smallholder 
OR "small holder") 

Ultrasonic 187 0 

TS= ("productivity") AND TS=("ultrasonic") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 
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Table 5 Sub keywords, filters, search strings and findings for profitability in the Web of Knowledge Core collection. 

Smart Farming - 
Subkeyword 

Main Keyword 
(Targeted 
variable) 

Filter 
Sub-search 

strings 
with Filter 

(16.02.2021) 

with filter + 
small holder 
(16.02.2021) 

Searchstring with small 
holder (23.03.2021) 

- None -

Profitability 

Agri*; 
Farm*; 
Horti*;  

livestock; 
crop;    
field; 

orchard; 
(small 

holder) 

44089 1077 

TS= (profitability) AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard)  AND 
TS=(smallholder OR "small holder")  

Information and 
Communication 
Technology / ICT 

45 0 

TS= ("profitability") AND TS=(ICT OR 
"Information and communication 
technology") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Smart farming 11 0 

TS= ("profitability") AND TS=("Smart 
farming") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

4.0 technology 0 0 

TS= ("profitability") AND TS=("4.0 
technology") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Precision 
agriculture / 
Precision 
farming 

478 4 
TS= ("profitability") AND TS=("precision 
agriculture" OR "precision farming") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

Cloud 
Computing 

27 10 

TS= ("profitability") AND TS=("cloud 
computing") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Mobile phone / 
App 

30 1 

TS= ("profitability") AND TS=("mobile 
phone" OR App) AND TS=(Agri* OR Farm* 
OR Horti* OR "livestock" OR crop OR field 
OR orchard) AND TS=(smallholder OR 
"small holder")  

Artificial 
Intelligence (AI) 

394 11 

TS= ("profitability") AND TS=("artificial 
intelligence" OR AI) AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard) AND TS=(smallholder 
OR "small holder") 

Big Data 42 1 

TS= ("profitability") AND TS=("big data") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Data Science 0 0 

TS= ("profitability") AND TS=("data 
science") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Deep learning 10 0 

TS= ("profitability") AND TS=("deep 
learning") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Machine 
learning 

92 37 

TS= ("profitability") AND TS=("machine 
learning") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder")  

Internet of 
things / IOT 

36 0 

TS= ("profitability") AND TS=("internet of 
things" OR IOT) AND TS=(Agri* OR Farm* 
OR Horti* OR "livestock" OR crop OR field 
OR orchard) AND TS=(smallholder OR 
"small holder") 
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Smart control / 
smart 
technology 

1 0 

TS= ("profitability") AND TS=("smart 
control" OR "smart technology") AND 
TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

Sensor 215 0 

TS= ("profitability") AND TS=("sensor") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

Robotics 23 0 

TS= ("profitability") AND TS=("robotics") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder")  

smart sensing / 
smart 
monitoring 

disease 
detection, 

weed 
detection, 

plant 
health 

38 1 

TS= ("profitability") AND TS=("smart 
sensing" OR "smart monitoring" OR 
"disease detection" OR "weed detection" 
OR "plant health") AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard) AND TS=(smallholder 
OR "small holder") 

Sensor network 16 0 

TS= ("profitability") AND TS=("sensor 
network") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Crowd sourcing 0 0 

TS= ("profitability") AND TS=("crowd 
sourcing") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder")  

Greenhouse 
computer 

0 0 

TS= ("profitability") AND TS=("greenhouse 
computer") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Site specific 606 21 

TS= ("profitability") AND TS=("site 
specific") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Variable rate 185 0 

TS= ("profitability") AND TS=("variable 
rate") AND TS=(Agri* OR Farm* OR Horti* 
OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Projection / 
Prediction 

999 50 

TS= ("profitability") AND TS=(projection 
OR prediction ) AND TS=(Agri* OR Farm* 
OR Horti* OR "livestock" OR crop OR field 
OR orchard) AND TS=(smallholder OR 
"small holder") 

Farm 
management 
information 
system / FMIS 

Yield 
estimation, 

LAI 
estimation, 

11 1 

TS= ("profitability") AND TS=("farm 
management information system" OR 
"FMIS" OR "yield estimation" OR "LAI 
estimation") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Remote Sensing 147 1 

TS= ("profitability") AND TS=("remote 
sensing") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Drone / UAV 19 0 

TS= ("profitability") AND TS=("drone" OR 
"UAV") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Satellite 99 0 

TS= ("profitability") AND TS=("satellite") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 

Photogrammetry 2 0 

TS= ("profitability") AND 
TS=("photogrammetry") AND TS=(Agri* 
OR Farm* OR Horti* OR "livestock" OR 
crop OR field OR orchard) AND 
TS=(smallholder OR "small holder") 
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Image Analysis 29 0 

TS= ("profitability") AND TS=("image 
analysis") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Image 
recognition 

3 0 

TS= ("profitability") AND TS=("image 
recognition") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Spectral index 1 0 

TS= ("profitability") AND TS=("spectral 
index") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

Vegetation index 39 0 

TS= ("profitability") AND TS=("vegetation 
index") AND TS=(Agri* OR Farm* OR 
Horti* OR "livestock" OR crop OR field OR 
orchard) AND TS=(smallholder OR "small 
holder") 

LiDAR 7 0 

TS= ("profitability") AND TS=("LiDAR" OR 
"lidar" OR "LIDAR") AND TS=(Agri* OR 
Farm* OR Horti* OR "livestock" OR crop 
OR field OR orchard) AND TS=(smallholder 
OR "small holder") 

Ultrasonic 22 0 

TS= ("profitability") AND TS=("ultrasonic") 
AND TS=(Agri* OR Farm* OR Horti* OR 
"livestock" OR crop OR field OR orchard) 
AND TS=(smallholder OR "small holder") 
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Annex 3: Mergdata database (webforms) 

Stakeholders Database: 

Link to Stakeholders Database: Stakeholders Database 

https://app.mergdata.net/surveys/webforms/form/b79e6913-90c8-44cf-9ffd-baa6ebfd34c2/start/MTYzNDc0MTM0MS42ODU0
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Technology Research Database 
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Link to Technology Research Database: Technology Research Database 

Business Research Database 

https://app.mergdata.net/surveys/webforms/form/99806493-d7b2-4ab4-90fe-adfc0446616c/start/MTYzNDc0MjA0OC41MDIz
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Link to Business Research Database : Business Research Database 

Recent Research Activities Database 

https://app.mergdata.net/surveys/webforms/form/0f3c1d01-fae9-4776-ae52-c66e6ef4337d/start/MTYzNDc0MjcwOS4yMTY4
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Link to Recent Research Activities Database : Recent Research Activities Database 

https://app.mergdata.net/surveys/webforms/form/d0e40062-c376-40ed-9a61-f540357f5a98/start/MTYzNDc0Mjg2Ni4yMjMy
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Project Research Database 
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Link to Project Research Database: Project Research Database 

Annex 4: Excel form used to introduce data and upload it to Mergdata 

https://app.mergdata.net/surveys/webforms/form/fedf67cd-da4c-4f0c-b264-a4d48d8c4431/start/MTYzNDc0MzEyOC44MDc=
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Annex 5: User Interface of Mergdata Android App 
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